A supplementary document of

A general computational model of mitochondrial metabolism in a whole organelle scale

Katsuyuki Yugi and Masaru Tomita Institute for Advanced Biosciences, Keio University, Japan

Contents

1	Abbreviations	3
	1.1 Species and organs	3
	1.2 Metabolites and enzymes: A-G	4
	1.3 Metabolites and enzymes: H-Z	5
	1.4 Other metabolites	6
2	Reactions	6
	2.1 Respiratory chain	6
	2.2 TCA cycle	7
	2.3 Fatty acid β oxidation	7
	2.4 Metabolite transporting system	8
3	Parameter classification	8
1	Kinatic paramators	0
-	$A = A \Delta C$	9
	4.1 ARO	10
	4.2 ΛCD	10
	4.9 ACC	11
	$4.4 \text{AGO} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	11
	4.6 AspTA	12
	4.0 Aspin	12
	4.8 CIC	12
	4.9 Complex I	14
	4.0 Complex III	15
	4.10 Complex IV	15
	4.11 Complex IV	16
	4.12 Complex V	17
	4 14 CPT II	17
	4 15 CS	18
	4 16 DIC	19
	4 17 ECH	19
	4.18 ETF-OO	20
	4.19 FM	$\frac{-0}{20}$
	4.20 HCD	$\frac{-0}{21}$
	4.21 IDHa	21
	4.22 IDHb	22
	4.23 MDH	22
	4.24 NDK	23
	4.25 OCT	24^{-5}
	4.26 OGC	25
	4.27 OGDC	$\frac{-9}{26}$
	4.28 PC	$\frac{-0}{26}$
	4.29 PDC	$\frac{1}{27}$
	4.30 PiC	$\frac{1}{28}$
	4.31 PYC	29
	4.32 SCS	30
	4.33 SDH	30

5	Initial condition	31
	5.1 The respiratory chain	. 31
	5.2 The TCA cycle	. 31
	5.3 Fatty acid β oxidation	. 32
	5.4 The inner-membrane transport	. 33
6	Steady-state condition	34
	6.1 The respiratory chain	. 34
	6.2 The TCA cycle and the inner-membrane transport	. 35
	6.3 Fatty acid β oxidation	. 35
7	Rate equations	36
	7.1 AAC	. 36
	7.2 CB Ordered Bi Bi	. 36
	7.3 Complex III	. 37
	7.4 Complex V	. 37
	7.5 IDHa	. 37
	7.6 IDHb	. 37
	7.7 Michaelis Uni Uni	. 37
	7.8 Multisite Ping-Pong	. 37
	7.9 Ordered Bi Bi	. 38
	7 10 PC	
	7 11 Ping-Pong Ri Ri	. 38
	7.12 Rapid Equilibrium Random Bi Bi	. 30
	7.12 Trapid Equinoritani Italidoni El El	. 00
	7 14 Uni Uni Reversible	. 33
		. 00

8 MeSH term and literature search

1 Abbreviations

1.1 Species and organs

Table 1: Abbreviations for species and organs

Abbreviation	Species, Organ
BH	Bovine Heart
BHM	Bovine Heart Mitochondria
BL	Bovine Liver
BLM	Bovine Liver Mitochondria
CL	Chicken Liver
HLC	Human Liver Cytosol
IMS	Intermembrane Space (Mitochondrial)
MAT	Matrix (Mitochondrial)
PH	Pig Heart
PHM	Pig Heart Mitochondria
PL	Pig Liver
PLM	Pig Liver Mitochondria
RbHM	Rabbit Heart Mitochondria
RB	Rat Brain
RH	Rat Heart
RHM	Rat Heart Mitochondria
RK	Rat Kidney
RLM	Rat Liver Mitochondria

1.2 Metabolites and enzymes: A-G

Table 2: Abbreviations for metabolites

Abbreviation	Substance name	Compound/EC number
AAC	ATP/ADP Carrier	
ACD	Acyl-CoA Dehydrogenase	EC1.3.99.3
Acetoacetyl-CoA		C00332
Acetyl-CoA		C00024
ACO	Aconitase	EC4.2.1.3
ADP	Adenosine Diphosphate	C00008
AGC	Aspartate/Glutamate Carrier	
Ala	Alanine	C00041
AlaTA	Alanine Transaminase	EC2.6.1.2
Asp	Aspartate	C00049
AspTA	Aspartate Transaminase	EC2.6.1.1
ATP	Adenosine Triphosphate	C00002
CAC	Carnitine Carrier	
Car	Carnitine	C00318
CIC	Citrate Carrier	
Cit	Citrate	C00158
CPT-I	Carnitine Palmitoyl Transferase I	EC2.3.1.21
CPT-II	Carnitine Palmitoyl Transferase II	EC2.3.1.21
CoA	Coenzyme A	C00010
Complex-I	NADH Dehydrogenase	EC1.6.5.3
Complex-III	Ubiquinol:Cytochrome c Oxidoreductase	EC1.10.2.2
Complex-IV	Cytochrome c Oxidase	EC1.9.3.1
Complex-V	ATP Synthetase	EC3.6.1.34
CO2	Carbon Dioxide	C00011
\mathbf{CS}	Citrate Synthase	EC4.1.3.7
Cyt-c2+	Ferricytochrome c	C00125
Cyt-c3+	Ferrocytochrome c	C00126
DIC	Dicarboxyrate Carrier	
ECH	Enoyl-CoA Hydratase	EC4.2.1.17
ETFox	Electron Transfer Flavoprotein (oxidised form)	
ETFred	Electron Transfer Flavoprotein (reduced form)	
ETF-QO	ETF:Q Oxidoreductase	
\mathbf{FM}	Fumarase	EC4.2.1.2
Fum	Fumarate	C00122
GDP	Guanosine Diphosphate	C00035
Glu	Glutamate	C00025
GTP	Guanosine Triphosphate	C00044

1.3 Metabolites and enzymes: H-Z

Table 3: Abbreviation	ns for metabolites	(cont'd)	
-----------------------	--------------------	----------	--

Abbreviation	Substance name	Compound/EC number
HCD	Hydroxyacyl-CoA Dehydrogenase	EC1.1.1.35
H+	Hydrogen ion (proton)	C00080
IDHa	Isocitrate Dehydrogenase (NAD+)	EC1.1.1.41
IDHb	Isocitrate Dehydrogenase (NADP+)	EC1.1.1.42
IsoCit	Isocitrate	C00311
Mal	Malate	C00149
MDH	Malate Dehydrogenase	EC1.1.1.37
NAD+		C00003
NADH		C00004
NADP+		C00006
NADPH		C00005
NDK	Nucleoside Diphosphate Kinase	EC2.7.4.6
OCT	Oxoacyl-CoA Thiolase	EC2.3.1.16
OG	Oxoglutarate	C00026
OGC	Oxoglutarate Carrier	
OGDC	Oxoglutarate Dehydrogenase Complex	EC1.2.4.2 etc.
OXA	Oxaloacetate	C00036
PalCar	Palmitoylcarnitine	C02990
\mathbf{PC}	Pyruvate Carboxylase	EC6.4.1.1
PDC	Pyruvate Dehydrogenase Complex	EC1.2.4.1 etc.
Pi	Phosphate	C00009
PiC	Pi Carrier	
Pyr	Pyruvate	C00022
PYC	Pyruvate Carrier	
Q	Ubiquinone	C00399
QH2	Ubiquinol	C00390
SCoA	Succinyl-CoA	C00091
SCS	Succinyl-CoA synthetase	EC6.2.1.4
SDH	Succinate Dehydrogenase	EC1.3.5.1
Suc	Succinate	C00042

1.4 Other metabolites

Abbreviation	Substance name	Compound/EC number
10Acyl-CoA	Decanoyl-CoA	C05274
10Enoyl-CoA	trans-Dec-2-enoyl-CoA	C05275
10Hydroxyacyl-CoA	(S)-3-Hydroxydedecanoyl-CoA	C05264
10Oxoacyl-CoA	3-Oxodecanoyl-CoA	C05265
12Acyl-CoA	Lauroyl-CoA	C01832
12Enoyl-CoA	trans-Dodec-2-enoyl-CoA	C03221
12Hydroxyacyl-CoA	(S)-3-Hydroxydodecanoyl-CoA	C05262
12Oxoacyl-CoA	3-Oxododecanoyl-CoA	C05263
14Acyl-CoA	Myristoyl-CoA	C02593
14Enoyl-CoA	trans-Tetradec-2-enoyl-CoA	C05273
14Hydroxyacyl-CoA	(S)-3-Hydroxytetradecanoyl-CoA	C05260
14Oxoacyl-CoA	3-Oxotetradecanoyl-CoA	C05261
16Acyl-CoA	Palmitoyl-CoA	C00154
16Enoyl-CoA	trans-Hexadec-2-enoyl-CoA	C05272
16Hydroxyacyl-CoA	(S)-3-Hydroxyhexadecanoyl-CoA	C05258
16Oxoacyl-CoA	3-Oxohexadecanoyl-CoA	C05259
4Acyl-CoA	Butanoyl-CoA	C00136
4Enoyl-CoA	Crotonyl-CoA	C00877
4Hydroxyacyl-CoA	(S)-3-Hydroxybutanoyl-CoA	C01144
6Acyl-CoA	Hexanoyl-CoA	C05270
6Enoyl-CoA	trans-Hex-2-enoyl-CoA	C05271
6Hydroxyacyl-CoA	(S)-3-Hydroxyhexanoyl-CoA	C05268
6Oxoacyl-CoA	3-Oxohexanoyl-CoA	C05269
8Acyl-CoA	Octanoyl-CoA	C01944
8Enoyl-CoA	trans-Oct-2-enoyl-CoA	C05276
8Hydroxyacyl-CoA	(S)-3-Hydroxyoctanoyl-CoA	C05266
80xoacyl-CoA	3-Oxooctaanoyl-CoA	C05267

Table 4: Abbreviations for metabolites (cont'd)

2 Reactions

2.1 Respiratory chain

Table 5: Reactions in the respiratory chain (where H_{MAT}^+ denotes H^+ in the matrix, H_{IMS}^+ is H^+ in the intermembrane space)

complex	reaction	reaction mechanism	source
I	$\begin{array}{c} \text{NADH} + \text{Q} + 5\text{H}_{MAT}^+ \\ \longleftrightarrow \text{NAD}^+ + \text{QH}_2 + 4\text{H}_{IMS}^+ \end{array}$	Ping-Pong Bi Bi [Fato et al., 1996]	BHM
II(SDH)	$\operatorname{Suc} + \operatorname{Q} \longleftrightarrow \operatorname{Fum} + \operatorname{QH}_2$	Ping-Pong Bi Bi [Grivennikova et al., 1993]	BHM
III	$\begin{array}{l} \mathrm{QH}_2 + 2 \mathrm{cyt} \ c^{3+} + 2 \mathrm{H}_{MAT}^+ \\ \rightarrow \mathrm{Q} + 2 \mathrm{cyt} \ c^{2+} + 4 \mathrm{H}_{IMS}^+ \end{array}$	See [Kubota et al., 1992]	BHM
IV	$4 \operatorname{cyt} c^{2+} + \operatorname{O}_2 + 8\operatorname{H}^+_{MAT} \\ \longrightarrow 4 \operatorname{cyt} c^{3+} + 2\operatorname{H}_2\operatorname{O} + 4\operatorname{H}^+_{IMS}$	Michaelis Uni Uni [Malmström and Andréasson, 1985]	-
V	$ADP + Pi + 3H^+_{IMS} \\ \longleftrightarrow ATP + H_2O + 3H^+_{MAT}$	See [Kholodenko, 1993]	-

2.2 TCA cycle

enzyme	reaction	reaction mechanism	source
PDC	$\begin{array}{c} Pyr + NAD^{+} + CoA \longrightarrow \\ Acetyl-CoA + NADH + CO_{2} \end{array}$	See [Hamada et al., 1975]	PHM
PC	$\begin{array}{l} Pyr + ATP + CO_2 \\ \longleftrightarrow OXA + ADP + Pi \end{array}$	See [Barden et al., 1972]	CL
AspTA	$\begin{array}{l} \operatorname{Asp} + \operatorname{OG} \\ \longleftrightarrow & \operatorname{OXA} + \operatorname{Glu} \end{array}$	Ping-Pong Bi Bi [Velick and Vavra, 1962, Henson and Cleland, 1964]	PH
AlaTA	$\begin{array}{l} Ala + OG \\ \longleftrightarrow Glu + Pyr \end{array}$	Ping-Pong Bi Bi [De Rosa et al., 1979]	PL
NDK	$\begin{array}{l} \text{ATP} + \text{GDP} \\ \longleftrightarrow & \text{ADP} + \text{GTP} \end{array}$	Ping-Pong Bi Bi [Garces and Cleland, 1969]	yeast
CS	$\begin{array}{l} \text{OXA} + \text{Acetyl-CoA} \\ \longleftrightarrow \text{Cit} + \text{CoA} \end{array}$	Random Bi Bi [Shepherd and Garland, 1969, Matsuoka and Srere, 1973]	RK, RB
ACO	$\operatorname{Cit} \longleftrightarrow \operatorname{IsoCit}$	Uni Uni Reversible [Guarriero-Bobyleva et al., 1978]	RLM
IDHa	$\begin{array}{l} \text{IsoCit} + \text{NAD}^+ \\ \longrightarrow \text{OG} + \text{NADH} \end{array}$	See [Plaut et al., 1974]	BH
IDHb	$\begin{array}{l} \text{IsoCit} + \text{NADP}^+ \\ \longleftrightarrow \text{OG} + \text{NADPH} \end{array}$	See [Londesborough and Dalziel, 1970]	BHM
OGDC	$\begin{array}{c} \mathrm{OG} + \mathrm{NAD}^{+} + \mathrm{CoA} \\ \longrightarrow \mathrm{SCoA} + \mathrm{NADH} + \mathrm{CO}_{2} \end{array}$	See [Hamada et al., 1975]	PHM
SCS	$\begin{array}{l} \mathrm{SCoA} + \mathrm{GDP} + \mathrm{Pi} \\ \longleftrightarrow \mathrm{Suc} + \mathrm{CoA} + \mathrm{GTP} \end{array}$	See [Cha and Parks Jr., 1964]	PH
SDH	$\begin{array}{c} \mathrm{Suc} + \mathrm{Q} \\ \longleftrightarrow \mathrm{Fum} + \mathrm{QH}_2 \end{array}$	Ping-Pong Bi Bi [Grivennikova et al., 1993]	BHM
FM	$\mathrm{Fum}\longleftrightarrow\mathrm{Mal}$	Uni Uni Reversible	
MDH	$\begin{array}{c} \mathrm{Mal} + \mathrm{NAD}^+ \\ \longleftrightarrow \mathrm{OXA} + \mathrm{NADH} \end{array}$	Ordered Bi Bi [Crow et al., 1983]	HLC

Table 6: The enzymes in/around the TCA cycle

2.3 Fatty acid β oxidation

Table 7: The enzymes in the fatty acid β oxidation

enzyme	reaction	reaction mechanism	source
ACD	$\begin{array}{l} \text{Acyl-CoA} + \text{ETF}_{ox} \\ \longleftrightarrow \text{Enoyl-CoA} + \text{ETF}_{red} \end{array}$	Ordered Bi Bi [McKean et al., 1979]	PLM
ECH	$\begin{array}{l} Enoyl-CoA + H_2O \\ \longleftrightarrow & 3-hydroxyacyl-CoA \end{array}$	Uni Uni Reversible [Yang and Schulz, 1987]	BL
HCD	$\begin{array}{l} 3\text{-hydroxyacyl-CoA} + \text{NAD}^+ \\ \longrightarrow 3\text{-oxoacyl-CoA} + \text{NADH} \end{array}$	Michaelis Uni Uni [Yang and Schulz, 1987]	PH
OCT	$\begin{array}{l} 3\text{-}oxoacyl\text{-}CoA + CoA \\ \longleftrightarrow Acyl\text{-}CoA + Acetyl\text{-}CoA \end{array}$	Ping-Pong Bi Bi [Miyazawa et al., 1981]	RLM
ETF-QO	$\begin{array}{l} \mathrm{ETF}_{red} + \mathrm{Q} \\ \longleftrightarrow \mathrm{ETF}_{ox} + \mathrm{QH}_2 \end{array}$	Ping-Pong Bi Bi [Beckmann and Frerman, 1985]	PLM
CPT I	$16 Acyl-CoA + Car \\ \longleftrightarrow CoA + PalCar$	Rapid Equilibrium Random Bi Bi [Ramsay et al., 1987]	BLM
CPT II	$\begin{array}{c} \mathrm{CoA} + \mathrm{PalCar} \\ \longleftrightarrow 16\mathrm{Acyl}\text{-}\mathrm{CoA} + \mathrm{Car} \end{array}$	Ordered Bi Bi [Mann et al., 1995]	RLM
CAC	$\operatorname{PalCar}_{IMS} + \operatorname{Car}_{MAT} \\ \leftrightarrow \operatorname{PalCar}_{MAT} + \operatorname{Car}_{IMS}$	Ping-Pong Bi Bi [Indiveri et al., 1994]	RLM

enzyme	reaction	reaction mechanism	source
AAC	$\begin{array}{c} \operatorname{ATP}_{MAT} \longrightarrow \operatorname{ATP}_{IMS} \\ \operatorname{ADP}_{MAT} \longleftarrow \operatorname{ADP}_{IMS} \end{array}$	See [Krämer and Klingenberg, 1982]	RHM
PiC	$ \begin{array}{c} \operatorname{Pi}_{IMS} + \operatorname{H}^{+}_{IMS} \\ \longleftrightarrow \operatorname{Pi}_{MAT} + \operatorname{H}^{+}_{MAT} \end{array} $	Rapid Equilibrium Random Bi Bi [Stappen and Krämer, 1994]	RHM
PYC	$\begin{array}{c} \operatorname{Pyr}_{IMS} + \operatorname{H}_{MAT}^{+} \\ \longleftrightarrow \operatorname{Pyr}_{MAT} + \operatorname{H}_{IMS}^{+} \end{array}$	Rapid Equilibrium Random Bi Bi ("Sequential Mechanism" [Nalecz, 1994])	RLM
OGC	$\begin{array}{l} \operatorname{OG}_{IMS} + \operatorname{Mal}_{MAT} \\ \longleftrightarrow \operatorname{OG}_{MAT} + \operatorname{Mal}_{IMS} \end{array}$	Rapid Equilibrium Random Bi Bi [Indiveri et al., 1991a]	BHM
DIC	$ \begin{aligned} \operatorname{Mal}_{IMS} + \operatorname{Pi}_{MAT} \\ & \longleftrightarrow \operatorname{Mal}_{MAT} + \operatorname{Pi}_{IMS} \end{aligned} $	Rapid Equilibrium Random Bi Bi [Indiveri et al., 1993]	RLM
CIC	$ \begin{array}{l} \operatorname{Cit}_{IMS} + \operatorname{Mal}_{MAT} \\ \longleftrightarrow \operatorname{Cit}_{MAT} + \operatorname{Mal}_{IMS} \end{array} $	Rapid Equilibrium Random Bi Bi [Bisaccia et al., 1993]	RLM
AGC		Rapid Equilibrium Random Bi Bi [Sluse et al., 1991]	RHM
CAC	$\begin{array}{l} \operatorname{PalCar}_{IMS} + \operatorname{Car}_{MAT} \\ \leftrightarrow \operatorname{PalCar}_{MAT} + \operatorname{Car}_{IMS} \end{array}$	Ping-Pong Bi Bi [Indiveri et al., 1994]	RLM

2.4 Metabolite transporting system

Table 8: Metabolite carriers on the inner membrane

3 Parameter classification

We classified all the kinetic parameters into four classes to distinguish their background as follows. This classification rule was applied for annotating the parameters shown in $4.1 \sim 4.33$.

Table 9: The fou	r classes for	annotating	the kinetic	parameters

Class	Definition	Example
class 0	Found in the literature	$K_{mA} = 2.3 \text{E} - 3(\text{M}),$ $K_{mB} = 2.3 \pm 0.2 \text{E} - 3(\text{M})$
class 1	Estimated around the values in the literature	$K_m = 2.3 \text{E} - 3(\text{M})$ $\longrightarrow K_m = 2.6 \text{E} - 3(\text{M})$
class 2	Estimated around the values of analogous metabolites	$K_m \text{ATP} = 2.3\text{E} - 3(\text{M})$ $\longrightarrow 0 \le K_m \text{GTP} \le 3\text{E} - 3(\text{M})$
class 3	Estimated arbitrarily	$? \le k \le ?$ $\longrightarrow k = 1.2E + 9 \text{ sec}^{-1}$

4 Kinetic parameters

4.1 AAC

Table 10: Kinetic parameters and their sources(AAC) Parameter classnotice velocity model, kf0 0.9 class 0 at mp = 0, kf0 = kr0kr0 0.9class 0 velocity model, at mp = 0normalize 2.21class 0 normalizing factor of kf0, kr0 Kd1 5.9E-4class 3 $Kd1 \rightarrow Kd$, velocity model, Kd1 = Kd2Kd25.9E-4 $\mathrm{Kd2} \to \mathrm{Kd'}$ class 3Kd accepts no effects from membrane potential $\mathbf{C}\mathbf{f}$ 3.30class 0 $\mathrm{kf0} \times \mathrm{exp}(\mathrm{Cf} \times \Delta \Psi) = \mathrm{kf}(\Delta \Psi)$ class 0 Cr -3.34 $kr0 \times \exp(Cr \times \Delta \Psi) = kr(\Delta \Psi)$ Т 310.0 absolute temperature kinetic mechanism see [Krämer and Klingenberg, 1982] rate equation See 7.1 source for parameter estimation [Krämer and Klingenberg, 1982] Figure 2(B) $V_{\rightarrow}^D(\Delta \Psi = 0, 180 \text{mV})$

Figure 1: Comparison between experimental data and computed ones from estimated parameters(AAC)

left:	Comparison between experimental data and computed or		
	abscissa	=	reaction rate (\sec^{-1})
	ordinate	=	substrate concentration (M)
right:	Percent er	ror b	between experimental data and computed ones
	abscissa	=	substrate concentration (M)
	ordinate	=	percent error

9

4.2 ACD

Para	meter	class	notice
KmS1	39E-6	class 0	[McKean et al., 1979, Table 1]
KmS2	0.12E-6	class 0	
KmP1	1.08E-6	class 2	
KmP2	2.42E-5	class 2	
KiS1	76E-6	class 0	
KiS2	0.24E-6	class 0	
KiP1	7.53E-5	class 2	
KiP2	1.19E-5	class 2	
Keq	8.99	class 3	
KcF	2.18	class 0	
KcR	0.30	class 2	
kinetic ı	nechanism	l	Ordered Bi Bi
			[McKean et al., 1979]
rate equ	ation		See 7.9
source f	or paramet	ter estimation	[McKean et al., 1979]

Table 11: Kinetic parameters and their sources(ACD)

Figure 2: Comparison between experimental data and Computed data from estimated parameters(ACD)

left:	Comparison between experimental data and computed ones				
	abscissa	=	reaction rate (\sec^{-1})		
	ordinate	=	substrate concentration (M)		
right:	Percent er	ror b	between experimental data and computed ones		
	abscissa	=	substrate concentration (M)		
	ordinate	=	percent error		

4.3 ACO

Table 12: Kinetic parameters and their sources(ACO)

Par	Parameter		notice
Ks	0.50E-3	class 0	
Kp	0.11E-3	class 0	
KcF	20.47	class 0	calculated from the graph
KcR	31.44	class 0	calculated from the graph
kineti	c mechanis	m	Uni Uni Reversible
			[Guarriero-Bobyleva et al., 1978]
rate equation			See 7.14

4.4 AGC

Table 13: Kinetic	parameters	and their	sources	(AGC))
-------------------	------------	-----------	---------	-------	---

Paran	neter	class	notice
KiS1	80E-6	class 0	[Dierks and Krämer, 1988]
KiS2	3.2E-3	class 0	[Dierks and Krämer, 1988]
KiP1	180E-6	class 0	[Dierks and Krämer, 1988]
KiP2	2.8E-3	class 0	[Dierks and Krämer, 1988]
KcF	10.0	class 3	
KcR	10.0	class 3	
alpha	1.0	class 0	
beta	1.0	class 0	
gamma	1.0	class 0	
delta	1.0	class 0	
kinetic m	echanism		Rapid Equilibrium Random Bi Bi
			[Sluse et al., 1991]
rate equa	tion		See 7.12
source for	r paramet	er estimation	-

4.5 AlaTA

Table 14: Kinetic parameters and their sources(AlaTA)

Para	neter	class	notice
KmS1	2E-3	class 0	
$\mathrm{KmS2}$	0.4E-3	class 0	
KmP1	32E-3	class 0	
KmP2	0.4E-3	class 0	
KiS1	8.7 E-3	class 2	KiP2
KiP2	12E-3	class 0	
Keq	0.69	class 2	0.16, AspTA
KcF	337	class 0	at $MW = 78000$,
			activity = 210 micromol/min/mg
KcR	0.15	class 3	
kinetic	mechanisı	n	Ping-Pong Bi Bi
			[De Rosa et al., 1979]
rate equ	ation		See 7.11
source f	or param	eter estimation	[De Rosa et al., 1979],
			Figure 3 with 5mM glutamate

4.6 AspTA

Para	meter	class	notice
KmS1	0.9E-3	class 0	[Velick and Vavra, 1962, Table II]
$\mathrm{KmS2}$	0.1E-3	class 0	[Velick and Vavra, 1962, Table II]
KmP1	0.04E-3	class 0	[Velick and Vavra, 1962, Table II]
KmP2	4E-3	class 0	[Velick and Vavra, 1962, Table II]
KiS1	2E-3	class 0	[Velick and Vavra, 1962, Table VII]
KiP2	8.3E-3	class 0	[Velick and Vavra, 1962, Table VII]
Keq	6.2	class 0	
KcF	300	class 0	
KcR	1000	class 0	from k4 and k10
kinetic mechanism			Ping-Pong Bi Bi [Velick and Vavra, 1962]
rate equation			See 7.11

Table 15: Kinetic parameters and their sources(AspTA)

4.7 CAC

Table 16: Kinetic parameters and their sources(CAC)

Parameter class		class	notice
KmS1	0.6E-3	class 0	[Indiveri et al., 1994]
KmS2	9.4E-3	class 0	[Indiveri et al., 1994]
KmP1	43.4E-6	class 1	11.6E-6,
			the value of Car/Car reaction
KmP2	0.4E-3	class 1	1.2E-3,
			the value of Car/Car reaction
KiS1	8.7 E-6	class 1	5.1E-6 [Indiveri et al., 1991b]
KiP2	250E-6	class 1	510E-6 [Indiveri et al., 1991b]
Keq	243.3	class 3	
KcF	1.22	class 2	
KcR	1.08	class 1	0.92, [Indiveri et al., 1991b]
kinetic mechanism			Ping-Pong Bi Bi [Indiveri et al., 1994]
rate equ	ation		See 7.11
source for parameter estimation			[Indiveri et al., 1991b]
			Figure 4 with 13mM acetylcarnitine

Figure 3: Comparison between experimental data and Computed data from estimated parameters(CAC)

left:	Comparison between experimental data and computed ones				
	abscissa	=	reaction rate (\sec^{-1})		
	ordinate	=	substrate concentration (M)		
right:	: Percent error between experimental data and computed				
	abscissa	=	substrate concentration (M)		
	ordinate	=	percent error		

4.8 CIC

Table 17: Kinetic parameters and their sources(CIC)

Paran	neter	class	notice			
KiS1	1.3E-4	class 2				
KiS2	4.4E-4	class 2				
KiP1	3.3E-4	class 0				
KiP2	4.18E-5	class 0				
KcF	5.6	class 0	$11.2 \text{ mmol/min/g prot.} \times 30 \text{kDa}$			
KcR	3.5	class 1	2.1, [Bisaccia et al., 1993, Table II]			
alpha	1.0	class 0				
beta	1.0	class 0				
gamma	1.0	class 0				
delta	1.0	class 0				
kinetic m	echanism		Rapid Equilibrium Random Bi Bi			
			[Bisaccia et al., 1993]			
rate equa	tion		See 7.12			
source for	r paramete	er estimation	Figure $1(A)$ with 0.05mM citrate,			
			(C) with 0.05mM malate			
			[Bisaccia et al., 1993]			

Figure 4: Comparison between experimental data and Computed data from estimated parameters(CIC)

left:	Comparison between experimental data and computed of			
	abscissa	=	reaction rate (\sec^{-1})	
	ordinate	=	substrate concentration (M)	
right:	Percent er	ror l	between experimental data and computed ones	
	abscissa	=	substrate concentration (M)	
	ordinate	=	percent error	

4.9 Complex I

Table 1	o. Riffetto	parameters and	T their sources(Complex I)
Parameter		class	notice
KmS1	9.2E-6	class 0	
KmS2	2.6E-4	class 0	
KmP1	9.9E-6	class 2	
KmP2	5.9E-5	class 2	
KiS1	2.1E-8	class 0	$KiS1 = 1 / k_{min}$
KiP2	9.8E-8	class 2	
Keq	407.9	class 3	
KcF	498	class 0	
KcR	229	class 2	
kinetic	mechanis	n	Ping-Pong Bi Bi
			[Fato et al., 1996]
rate equ	ation		See 7.11
source f	or param	eter estimation	[Fato et al., 1996]
			Figure 1(C) with 2.4 μ M
			reduced CoQ_2

Table 18: Kinetic parameters and their sources(Complex I)

Figure 5: Comparison between experimental data and Computed data from estimated parameters (Complex I)

left:	Comparison between experimental data and compute			
	abscissa	=	reaction rate (\sec^{-1})	
	ordinate	=	substrate concentration (M)	
right:	Percent er	ror l	between experimental data and computed ones	
	abscissa	=	substrate concentration (M)	
	ordinate	=	percent error	

4.10 Complex III

Parameter class			notice			
KmA	2.8E-5	class 0	$ m K_5 imes m KcF$			
KmB	3.0E-6	class 0	$K_6 \times KcF$			
Kb1	5.4E-6	class 2	$k_5/k_4 \text{ K}_3 = \text{K}_4 \times \text{Kb1}$			
Kb2	5.7 E-6	class 2	$k_{10}/k_9, \mathrm{K}_1 = \mathrm{K}_2 \times \mathrm{Kb2}$			
Kq1	2.8E-6	class 2	$k_7/k_6, \mathrm{K}_4 = \mathrm{Kq}1/k_8$			
Kq2	1.9E-6	class 2	$k_{12}/k_{11}, \mathrm{K}_2 = \mathrm{K}_5 \times \mathrm{Kq}_2$			
k8	622.1	class 2				
KcF	426.8	class 0	1 / K ₇			
kinetic	mechanis	sm	[Kubota et al., 1992, Scheme 3]			
rate eq	uation		See 7.3			
source	for paran	neter estimation	[Kubota et al., 1992]			
			Figure 6 with 15 μ M Q ₂ H ₂			

Table 19: Kinetic parameters and their sources(Complex III)

Figure 6: Comparison between experimental data and Computed data from estimated parameters(Complex III)

left:	Comparison between experimental data and computed ones					
	abscissa	=	reaction rate (\sec^{-1})			
	ordinate	=	substrate concentration (M)			
right:	Percent er	ror b	etween experimental data and computed ones			
	abscissa	=	substrate concentration (M)			
	ordinate	=	percent error			
			-			

4.11 Complex IV

Table 20: Kinetic parameters and their sources(Complex IV)

Parameter		class	notice
Ks	110E-6	class 0	Value at $pH = 7$
KcF	93.5	class 0	Value at pH = 7, $\frac{d[cyt2+]}{dt} \times \frac{1}{4}$
kinetic mechanism			Michaelis Uni Uni
			[Malmström and Andréasson, 1985]
rate equation			See 7.7

4.12 Complex V

Par	ameter	class	notice
Kd	2.67E-7	class 3	
Kp	9.02E-5	class 3	
Kt	4.33E-5	class 3	
KcF	14.5	class 0	2340nmol/min/mg × 371 kDa
Khx	1.3E-4	class 3	
Khy	1.6E-4	class 3	
klt_f	1.35E + 8	class 3	
klt_r	0.00018	class 3	
ax	0.1	class 3	
ay	0.6	class 3	
beta	0.3	class 3	
Т	310	-	
kinetic	e mechanisr	n	see [Kholodenko, 1993]
rate e	quation		See 7.4
source	for parame	eter estimation	[Matsuno-Yagi and Hatefi, 1985]
			Figure 2 with NADH respiration

Table 21: Kinetic parameters and their sources(Complex V)

Figure 7: Comparison between experimental data and computed data from estimated parameters (Complex V)

left:	Comparison between experimental data and computed ones			
	abscissa	=	reaction rate (sec ^{-1})	
	ordinate	=	substrate concentration (M)	
right:	Percent er	ror b	etween experimental data and computed ones	
	abscissa	=	substrate concentration (M)	
	ordinate	=	percent error	

4.13 CPT I

Table 22: Kine	tic parameters	and their	sources	CPI	1	í)
----------------	----------------	-----------	---------	-----	---	----

Parar	Parameter		notice
KiS1	182E-6	class 0	[Ramsay et al., 1987]
KiS2	0.82E-6	class 0	
KiP1	6.7 E-6	class 0	
KiP2	21E-6	class 0	
KcF	61.4	class 0	
KcR	32.8	class 0	
alpha	1.0	class 0	
beta	1.0	class 0	
gamma	1.0	class 0	
delta	1.0	class 0	
kinetic mechanism			Rapid Equilibrium Random Bi Bi
			[Ramsay et al., 1987]
rate equa	ation		See 7.12

4.14 CPT II

Table 23: Kinetic parameters and their sources(CPT II)

Para	meter	class	notice
KmS1	6.3E-4	class 2	
KmS2	3.3E-4	class 2	
KmP1	950E-6	class 0	
$\rm KmP2$	34E-6	class 0	
KiS1	2.4E-4	class 2	
KiS2	2.7E-4	class 2	
KiP1	41E-6	class 0	
KiP2	7E-6	class 0	
Keq	23540	class 3	
KcF	8.0	class 2	
KcR	2.4	class 0	$1.8 \text{ Unit/mg} \times 80 \text{kDa}$
			[Mann et al., 1995, Woeltje et al., 1987]
kinetic mechanism			Ordered Bi Bi
			[Mann et al., 1995]
rate equation			See 7.9
source for parameter estimation			[Mann et al., 1995]
r · · · · · · · · · · · · · · · · · · ·			Figure 1 with $0\mu M SDZ$

Figure 8: Comparison between experimental data and Computed data from estimated parameters(CPT II)

left:	Comparison between experimental data and computed ones				
	abscissa	=	reaction rate (\sec^{-1})		
	ordinate	=	substrate concentration (M)		
right:	Percent er	ror l	between experimental data and computed ones		
	abscissa	=	substrate concentration (M)		
	ordinate	=	percent error		

4.15 CS

Table 24: Kinetic parameters and their sources(CS)

Par	ameter	class	notice
k1	6.8E10	class 3	
k_1	8.1 E8	class 3	
k2	3.0E10	class 3	
k_2	7.2 E8	class 3	
k3	6.2 E 10	class 3	
k_3	5.1 E8	class 3	
k4	1.2 E 10	class 3	
k_4	4.0 E8	class 3	
k5	1.4 E9	class 3	
k_5	2.4E8	class 3	
k6	4.1 E 10	class 3	
k_6	1.1E8	class 3	
k7	5E10	class 3	
k_7	9.8 E8	class 3	
k8	5.3 E10	class 3	
k_8	$7.7 \mathrm{E8}$	class 3	
kinetic mechanism			Random Bi Bi,
			[Shepherd and Garland, 1969],
			[Matsuoka and Srere, 1973],
			[Mukherjee and Srere, 1976]
sour	ce for para	ameter estimation	[Matsuoka and Srere, 1973]

4.16 DIC

Table 25:	Kinetic parame	ters and their sources(DIC)
	1	

Parai	neter	class	notice
KiS1	0.20E-3	class 0	[Indiveri et al., 1993, Fig. 5]
KiS2	0.72E-3	class 0	[Indiveri et al., 1993, Fig. 5]
KiP1	9.0E-4	class 2	
KiP2	7.6E-4	class 2	
KcF	2.7	class 0	$6.7\text{E-}6 \text{ mol/min/mg} \times 28 \text{kDa}$
KcR	4.1	class 1	
alpha	1.0	class 0	
beta	1.0	class 0	
gamma	1.0	class 0	
delta	1.0	class 0	
kinetic m	nechanism		Rapid Equilibrium Random Bi Bi
			[Indiveri et al., 1993]
rate equa	ntion		See 7.12
source fo	r paramete	er estimation	Figure $5(A)$ with 0.05mM
			phosphate, (C) with 0.10mM
			malate [Indiveri et al., 1993]

Figure 9: Comparison between experimental data and Computed data from estimated parameters(DIC)

left:	Comparison between experimental data and computed ones		
	abscissa	=	reaction rate (\sec^{-1})
	ordinate	=	substrate concentration (M)
right:	Percent error between experimental data and computed ones		
	abscissa	=	substrate concentration (M)
	ordinate	=	percent error

4.17 ECH

Table 26: Kinetic parameters and their sources(ECH)

	P				
Parameter		class	notice		
Ks	16.9E-6	class 0			
Kp	12.1E-6	class 0			
KcF	8.9166667	class 0			
KcR	2154.1667	class 0			
kinetic mechanism			Uni Uni Reversible [Yang and Schulz, 1987]		
rate equation			See 7.14		

4.18 ETF-QO

Table 27: Kinetic parameters and their sources(ETF-QO) Parameter class notice KmS1 0.31E-6 class 0 KmS20.39E-6 class 2KmP1 0.32E-6 class 0KmP24.2E-9class 2KiS10.31E-6class 0KiP2 0.3E-6class 2Keq 0.66class 0KcF 78class 0101 class 2 KcR kinetic mechanism Ping-Pong Bi Bi, [Beckmann and Frerman, 1985] rate equation See 7.11 source for parameter estimation Figure 4 with $1.5\mu M$ ETF hydroquinone [Beckmann and Frerman, 1985]

Figure 10: Comparison between experimental data and Computed data from estimated parameters(ETF:QO)

left:	Comparison between experimental data and computed ones			
	abscissa	=	reaction rate (\sec^{-1})	
	ordinate	=	substrate concentration (M)	
right:	Percent error between experimental data and computed ones			
	abscissa	=	substrate concentration (M)	
	ordinate	=	percent error	

4.19 FM

Table 28: Kinetic parameters and their sources(FM)

Parameter		class	notice
Ks	0.5E-5	class 0	[Boyer, 1970, Vol. V, chap. 19, Table V]
Kp	2.5E-5	class 0	
KcF	800	class 0	
KcR	900	class 0	
kinetic mechanism			Uni Uni Reversible
rate equation			See 7.14

4.20 HCD

Table 29: Kinetic parameters and their sources(HCD)

		1	· · · · · · · · · · · · · · · · · · ·
Parameter		class	notice
Ks	1.5E-6	class 0	
KcF	41.483333	class 0	
kinetic mechanism			Michaelis Uni Uni [Yang and Schulz, 1987]
rate equation			See 7.7

4.21 IDHa

Table 30: Kinetic parameters and their sources(IDHa)

		^	· · · · · · · · · · · · · · · · · · ·
Parameter		class	notice
KcF	105	class 0	$28 \text{ U/mg} \times 224000 \text{ Da}$
			[Plaut et al., 1974, Ehrlich et al., 1981]
b	29.6	class 3	
с	0.00023	class 3	
d	7.8e-05	class 3	
e	0.00064	class 3	
f	0.00036	class 3	
kineti	c mechanis	sm	[Plaut et al., 1974]
rate e	quation		See 7.5
source for parameter estimation			Figure 4 with 1.0mM ADP,
			[Plaut et al., 1974]

Figure 11: Comparison between experimental data and Computed data from estimated parameters(IDHa)

left:	Comparison between experimental data and computed ones		
	abscissa	=	reaction rate (\sec^{-1})
	ordinate	=	substrate concentration (M)
right: Percent error between experimental data a		etween experimental data and computed ones	
	abscissa	=	substrate concentration (M)
	ordinate	=	percent error

4.22 IDHb

Table 31: Kinetic parameters and their sources(IDHb)

Parameter		class	notice
phi0	5.1E-2	class 0	[Londesborough and Dalziel, 1970, Table 1]
phi1	9.5E-8	class 0	
phi2	0.96E-6	class 0	
phi12	9E-8	class 0	
phir0	6.6E-2	class 0	
phir1	0.37E-6	class 0	
phir2	29E-6	class 0	
phir3	2.5E-4	class 0	
phir12	6E-12	class 0	
phir13	1.3E-10	class 0	
phir23	9.4E-8	class 0	
phir123	4.6E-14	class 0	
kinetic mechanism			See [Londesborough and Dalziel, 1970]
rate equation			See 7.6

4.23 MDH

Table 32: Kinetic parameters and their sources(MDH)

Parameter		class	notice
KmS1	72E-6	class 0	
KmS2	110E-6	class 0	
KmP1	1600E-6	class 0	
KmP2	170E-6	class 0	
KiS1	11E-6	class 0	
KiS2	100E-6	class 0	
KiP1	7100E-6	class 0	
KiP2	1900E-6	class 0	
KcF	0.390	class 0	specific activity = 0.33 U/mg , MW = $72000 \text{ [Crow et al., 1983, Table I]}$
KcR	0.040	class 0	$\frac{V_f}{V_r} = 9.8$ [Crow et al., 1983, Table III]
kinetic mechanism			Ordered Bi Bi [Crow et al., 1983]
rate equation			See 7.2

4.24 NDK

	Table 33: Kinetic parameters and their sources(NDK)					
Para	ameter	class	notice			
KmS1	0.31E-3	class 0	[Garces and Cleland, 1969]			
$\mathrm{KmS2}$	0.043E-3	class 0	[Garces and Cleland, 1969], UDP			
KmP1	0.050E-3	class 0	[Garces and Cleland, 1969]			
KmP2	0.25E-3	class 0	[Garces and Cleland, 1969],UTP			
KiS1	0.21E-3	class 2	[Garces and Cleland, 1969]			
KiP2	0.35E-3	class 2	[Garces and Cleland, 1969],UTP			
Keq	1.28	class 0	[Garces and Cleland, 1969]			
KcF	6883	class 0	MW = 70000 Da [Colomb et al., 1969]			
KcR	5950	class 0	MW = 70000 Da [Colomb et al., 1969]			
kinetic i	nechanism		Ping-Pong Bi Bi			
			[Garces and Cleland, 1969, Colomb et al., 1969]			
rate equation			See 7.11			
source f	or paramete	er estimation	[Colomb et al., 1969, Figure 4 with 0.18mM ATP]			

Figure 12: Comparison between experimental data and Computed data from estimated parameters(NDK)

left:	Comparison between experimental data and computed ones			
	abscissa	=	reaction rate (\sec^{-1})	
	ordinate	=	substrate concentration (M)	
right:	Percent er	ror b	between experimental data and computed ones	
	abscissa	=	substrate concentration (M)	
	ordinate	=	percent error	

4.25 OCT

		Kinetic paran	leters and their sources(OC1)		
Para	meter	class	notice		
KmS1	1.1E-6	class 0	OCTa		
	1.1E-6	class 0	OCTb, value for 16Oxoacyl-CoA		
	1.3E-6	class 0	OCTc		
	2.1E-6	class 0	OCTd		
	3.2E-6	class 0	OCTe		
	6.7 E-6	class 0	OCTf		
	12.4E-6	class 0	OCTg		
KmS2	28.6E-6	class 0			
	28.6E-6	class 0	OCTb, value for 16Oxoacyl-CoA		
	38.4E-6	class 0	OCTc		
	35.7E-6	class 0	OCTd		
	35.5E-6	class 0	OCTe		
	18.9E-6	class 0	OCTf		
	2.2E-6	class 0	OCTg		
KmP1	7.2 E-5	class 2			
KmP2	8.7 E-5	class 2			
KiS1	1.1E-5	class 2			
KiP2	8.7 E-5	class 2			
Keq	160.98	class 3			
KcF	137.86	class 0	$V_{max} \times 178000 \mathrm{Da}$		
	137.86	class 0	OCTb, value for 16Oxoacyl-CoA		
	253.52	class 0	OCTc		
	272.94	class 0	OCTd		
	277.38	class 0	OCTe		
	264.07	class 0	OCTf		
	80.244	class 0	OCTg		
KcR	87.253	class 2			
	87.253	class 2	OCTb, value for 16Oxoacyl-CoA		
	160.46	class 2	OCTc		
	172.75	class 2	OCTd		
	175.56	class 2	OCTe		
	167.13	class 2	OCTf		
	51.615	class 2	OCTg		
kinetic	mechanism		Ping-Pong Bi Bi,		
			[Miyazawa et al., 1981]		
rate equ	ation		See 7.11		
source f	or paramet	ter estimation	Figure 5(B) with 200μ M Acetyl-CoA,		
			[Miyazawa et al., 1981]		

Figure 13: Comparison between experimental data and Computed data from estimated parameters(OCT)

left:	Comparison between experimental data and computed ones		
	abscissa	=	reaction rate (\sec^{-1})
	ordinate	=	substrate concentration (M)
right:	Percent er	ror b	etween experimental data and computed ones
	abscissa	=	substrate concentration (M)
	ordinate	=	percent error

4.26 OGC

Table 34: Kinetic parameters and their sources(OGC)

Para	meter	class	notice
KiS1	0.3E-3	class 0	
KiS2	0.7 E-3	class 2	
KiP1	1.4E-3	class 0	
KiP2	0.17E-3	class 2	
KcF	3.675	class 0	
KcR	4.83	class 0	
alpha	1.0	class 0	
beta	1.0	class 0	
gamma	1.0	class 0	
delta	1.0	class 0	
kinetic n	nechanism		Rapid Equilibrium Random Bi Bi,
			[Indiveri et al., 1991a]
rate equa	ation		See 7.12
source for	r paramete	er estimation	Figure 2 with 20mM malate,
			[Indiveri et al., 1991a]

4.27 OGDC

Table 35:	Kinetic	parameters	and	their	sources	(OGDC)

Par	ameter	class	notice		
KmA	0.22E-3	class 0	Pig Heart [Hamada et al., 1975]		
KmB	0.025E-3	class 0	Pig Heart [Hamada et al., 1975]		
KmC	0.050E-3	class 0	Pig Heart [Hamada et al., 1975]		
KmP	3E-4	class 2			
KmR	6E-4	class 2			
Kia	7.2E-4	class 2	0.75E-3, Dictyostelium,		
			[Heckert et al., 1989]		
Kib	7.4E-4	class 2			
Kic	1E-4	class 2			
Kip	1.1E-6	class 2			
Kiq	81E-6	class 0	Human Heart [Kiselevsky et al., 1990]		
Kir	25E-6	class 0	Human Heart [Kiselevsky et al., 1990]		
KcF	177	class 2	estimated, 270 at $MW = 2700000Da$		
kinetic	mechanism		Multisite Ping-Pong		
			[Cleland, 1973, Hamada et al., 1975]		
rate eq	uation		See 7.8		
source	for paramet	er estimation	Figure 1(A) with 0.010mM CoA,		
			(B) with 0.20mM NAD,		
			(C) with 0.10mM oxoglutarate		
			[Hamada et al., 1975]		

4.28 PC

Tab	le	36:	Kinetic	parameters	and	their	sources	(PC))
-----	----	-----	---------	------------	-----	-------	---------	------	---

Parameter		class	notice
KmA	0.11E-3	class 0	ATP, Table III, inhibitor=MgADP
KmB	1.63E-3	class 0	HCO_3^- , Table III, inhibitor=OXA
KmC	0.37E-3	class 0	Pyr, Table III, inhibitor=OXA
KmP	16E-3	class 0	Pi, Table III, inhibitor=MgATP
KmQ	0.24E-3	class 0	ADP, Table III, inhibitor=MgATP
KmR	0.051E-3	class 0	OXA, Table III, inhibitor=Pyr
Keq	9.0	class 0	
Kia	0.15E-3	class 0	ATP, Table I
Kib	1.6E-3	class 0	HCO_3^- , Table I
Kic	0.13E-3	class 0	Pyr, Table III, vs. OXA
Kip	7.9E-3	class 0	Pi, Table I
Kiq	0.19E-3	class 0	ADP, Table I
Kir	0.24E-3	class 0	OXA, Table III, vs. Pyr
KcF	200	class 0	specific activity = 20 , MW= 600000
KcR	20	class 0	$\frac{V_1}{V_2} = 10$
kinetic mechanism			[Barden et al., 1972]
rate equation			See 7.10

4.29 PDC

Table 37: Kinetic parameters and their sources (PDC	C
---	---

Para	Parameter class		notice		
KmA	25E-6	class 0	[Kiselevsky et al., 1990]		
KmB	13E-6	class 0	[Kiselevsky et al., 1990]		
KmC	50E-6	class 0	[Kiselevsky et al., 1990]		
KmP	5.9E-7	class 2			
KmR	6.9E-7	class 2			
Kia	5.5E-4	class 2	Dictyostelium, [Heckert et al., 1989]		
Kib	3.0E-4	class 2			
Kic	1.8E-4	class 2			
Kip	6.0E-5	class 2			
Kiq	35E-6	class 0	Human Heart [Kiselevsky et al., 1990]		
Kir	36E-6	class 0	Human Heart [Kiselevsky et al., 1990]		
KcF	856	class 1	specific activity = 4.8 U/mg protein		
			[Kiselevsky et al., 1990]		
kinetic	mechanis	sm	Multisite Ping-Pong,		
			[Cleland, 1973, Hamada et al., 1975]		
rate equ	uation		See 7.8		
source :	for paran	neter estimation	Figure $2(A)$ with 0.015mM CoA,		
			(B) with 0.050mM NAD,		
			(C) with 0.050mM pyruvate		
			[Hamada et al., 1975]		
350					

Figure 14: Comparison between experimental data and Computed data from estimated parameters(PDC)

 left: Comparison between experimental data and computed ones abscissa = reaction rate (sec⁻¹) ordinate = substrate concentration (M)
 right: Percent error between experimental data and computed ones abscissa = substrate concentration (M) ordinate = percent error

4.30 PiC

Table 38: Kinetic parameters and their sources(PiC)

Para	meter	class	notice
KiS1	0.87	class 2	
KiS2	1.86E-8	class 2	
KiP1	32.84E-9	class 0	Fig. 4, [Stappen and Krämer, 1994]
KiP2	11.12E-3	class 0	Fig. 4, [Stappen and Krämer, 1994]
KcF	37.9	class 0	Fig. 4, [Stappen and Krämer, 1994], 34kDa
KcR	37.0	class 0	Fig. 4, [Stappen and Krämer, 1994], 34kDa
alpha	1.0	class 0	
beta	1.0	class 0	
gamma	1.0	class 0	
delta	1.0	class 0	
kinetic m	lechanism		Rapid Equilibrium Random Bi Bi,
			[Stappen and Krämer, 1994]
rate equa	tion		See 7.12
source for	r parameter	estimation	Figure $4(A)$ with pH5.85,
			(B) with 4mM phosphate]stappen94

Figure 15: Comparison between experimental data and Computed data from estimated parameters(PiC)

left:	Comparison between experimental data and computed ones			
	abscissa	=	reaction rate (\sec^{-1})	
	ordinate	=	substrate concentration (M)	
right:	Percent error between experimental data and computed on			
	abscissa	=	substrate concentration (M)	
	ordinate	=	percent error	

4.31 PYC

Table 39:	Kinetic	parameters	and	their	sources	(\mathbf{P})	YC)

Paran	neter	class	notice
KiS1	6.1E-4	class 2	
KiS2	5.9E-4	class 2	
KiP1	2.6E-4	class 2	
KiP2	4.1E-4	class 2	
KcF	0.84	class 1	0.67 [Capuano et al., 1990]
KcR	0.78	class 1	0.61 [Capuano et al., 1990]
alpha	1.0	class 0	
beta	1.0	class 0	
gamma	1.0	class 0	
delta	1.0	class 0	
kinetic n	nechanism	1	Rapid Equilibrium Random Bi Bi,
			(sequential) [Nalecz, 1994]
rate equation			See 7.12
source fo	r parame	ter estimation	[Capuano et al., 1990, Figure 3]

4.32 SCS

Table 40: Kinetic parameters and their sources(SCS)				
Parameter		class	notice	
KmA	5E-6	class 0	GDP (2 - 8E-6)	
KmB	3.5E-5	class 0	Succinyl-CoA $(1 - 6E-5)$	
KmC	4.5E-4	class 0	Pi (2 - 7E-4)	
KmP	6E-4	class 0	Succinate $(4 - 8E-4)$	
KmQ	7.5E-6	class 0	GTP (5 - 10E-6)	
$\rm KmC2$	4.5E-4	class 0	Pi (2 - 7E-4)	
KmP2	6E-4	class 0	Succinate $(4 - 8E-4)$	
Keq	8.375	class 0	From Haldane relationships	
Kia	4E-4	class 0	GDP (Table II)	
Kib	2E-5	class 0	Succinyl-CoA, (vs. CoA, Fig. 7)	
Kic	3E-5	class 0	Pi (Table II)	
Kip	7E-2	class 0	Succinate (Table II)	
Kiq	5E-6	class 0	GTP (Table II)	
Kir	6.7E-6	class 0	CoA, from a Haldane relationship, Kq * Kir = Kiq * Kr	
			where Kr $(CoA) = 10E-6$ M	
Kc1	100	class 0	kcat = Kc2 = 25 to 287.5 (20 to 230 U/mg * 75000 Dalton)	
Kc2	100	class 3	guess, V1 / V2 = 0.20, V2' / V1' = 30	
kinetic r	nechanisr	n	See [Cha and Parks Jr., 1964]	
rate equation			See 7.13	

4.33 SDH

Table 41: Kinetic parameters and their sources(SDH)

Para	meter	class	notice
KmS1	30E-6	class 0	
KmS2	69E-6	class 0	30-130E-6
KmP1	0.3E-6	class 0	
KmP2	1.5E-6	class 0	
KiS1	4.1E-6	class 2	Ki for carboxin = $3.0E-6$ M
KiP2	5.6E-6	class 2	Ki for carboxin = $3.0E-6$ M
Keq	0.037	class 0	from Haldane
KcF	69.3	class 0	MW = 104000 Da
KcR	1.73	class 0	MW = 104000 Da
kinetic mechanism		n	Ping-Pong Bi Bi [Grivennikova et al., 1993]
rate equation			See 7.11
source f	or param	eter estimation	[Grivennikova et al., 1993, Figure $2(B)$]

5 Initial condition

5.1 The respiratory chain

Table 42: Initial condition of enzymes (respiratory chain)

name	localization	number of molecules
Complex-I	MT-IM	1000
Complex-III	MT-IM	3000
Complex-IV	MT-IM	7000
Complex-V	MT-IM	900

Table 43: Initial condition of metabolites (respiratory chain)

	name	localization	concentration
ſ	Q	MT-IMS	0.26E-3 M
	QH2	MT-IMS	0.028E-3 M
	Cyt-c3+	MT-IMS	3E-6 M
	Cyt-c2+	MT-IMS	0.11E-3 M
	H+	MT-IMS	1E-6 M (fix)
	H+	MATRIX	1E-8 M (fix)

5.2 The TCA cycle

Table 44: Initial condition of enzymes (TCA cycle)

name	localization	number of molecules
CS	MATRIX	100
ACO	MATRIX	100
IDHa	MATRIX	100
IDHb	MATRIX	100
OGDC	MATRIX	100
SCS	MATRIX	100
SDH	MT-IM	100
FM	MATRIX	100
MDH	MATRIX	100
AlaTA	MATRIX	100
AspTA	MATRIX	100
NDK	MATRIX	100
PDC	MATRIX	100
PC	MATRIX	100

name	localization	concentration
Cit	MT-IMS	0.42E-3 M (fix)
Cit	MATRIX	0.42E-3 M
IsoCit	MATRIX	0.42E-3 M
OG	MT-IMS	0.021E-3 M (fix)
OG	MATRIX	0.021E-3 M
SCoA	MATRIX	76168
Suc	MATRIX	2.95E-3 M
Fum	MATRIX	0.065E-3 M
Mal	MT-IMS	0.50E-3 M (fix)
Mal	MATRIX	0.50E-3 M
OXA	MATRIX	0.004E-3 M
Asp	MATRIX	1.14E-3 M
Asp	MT-IMS	1.14E-3 M (fix)
Glu	MATRIX	3.03E-3 M
Glu	MT-IMS	3.03E-3 M (fix)
Ala	MATRIX	3.44E-3 M
Pyr	MT-IMS	0.1025E-3 M (fix)
Pyr	MATRIX	0.1025E-3 M (fix)
CoA	MT-IMS	700 (fix)
CoA	MATRIX	70435
Acetyl-CoA	MATRIX	0.03E-3 M
NADH	MATRIX	0.072E-3 M
NAD+	MATRIX	0.170E-3 M
NADPH	MATRIX	0.072E-3 M
NADP+	MATRIX	0.170E-3 M
CO2	MATRIX	1.63E-3 M

Table 45: Initial condition of metabolites (TCA cycle)

Table 46	: Initial condition	tion of metabolites
name	localization	concentration
ATP	MT-IMS	4.5E-3 M (fix)
ATP	MATRIX	4.5E-3 M
ADP	MT-IMS	0.45E-3 M (fix)
ADP	MATRIX	0.45E-3 M (fix)
GTP	MATRIX	4.5E-3 M
GDP	MATRIX	0.45E-3 M
Pi	MT-IMS	4E-3 M (fix)
Pi	MATRIX	4E-3 M

5.3 Fatty acid β oxidation

Table 47: Initial condition of enzymes (fatty acid β oxidation)

name	localization	number of molecules
CPT-I	MT-OM	100
CAC	MT-IM	100
ACD	MT-IM	100
ECH	MT-IM	100
HCD	MT-IM	100
OCT	MT-IM	100
ETF-QO	MT-IM	100

Table 48: Initial condition of metabolites (fatty acid β oxidation 1)

name	localization	concentration
Car	MT-IMS	0.2E-3 M (fix)
Car	MATRIX	0.95E-3 M
PalCar	MT-IMS	0.6E-3 M (fix)
PalCar	MATRIX	0.012E-3 M
16Acyl-CoA	MT-IMS	0.039E-3 M (fix)
ETFred	MATRIX	0.31E-6 M
ETFox	MATRIX	0.32E-6 M

Table 49: Initial condition of metabolites (fatty acid β oxidation 2)

name	localization	concentration
16Acyl-CoA	MATRIX	0.039E-3 M
16Enoyl-CoA	MATRIX	0.017E-3 M
16Hydroxyacyl-CoA	MATRIX	0.012E-3 M
16Oxoacyl-CoA	MATRIX	0.0011E-3 M
14Acyl-CoA	MATRIX	0.039E-3 M
14Enoyl-CoA	MATRIX	0.017E-3 M
14Hydroxyacyl-CoA	MATRIX	0.012E-3 M
14Oxoacyl-CoA	MATRIX	0.0011E-3 M
12Acyl-CoA	MATRIX	0.087E-3 M
12Enoyl-CoA	MATRIX	0.017E-3 M
12Hydroxyacyl-CoA	MATRIX	0.012E-3 M
12Oxoacyl-CoA	MATRIX	0.0013E-3 M
10Acyl-CoA	MATRIX	0.087E-3 M
10Enoyl-CoA	MATRIX	0.017E-3 M
10Hydroxyacyl-CoA	MATRIX	0.012E-3 M
10Oxoacyl-CoA	MATRIX	0.0021E-3 M
8Acyl-CoA	MATRIX	0.087E-3 M
8Enoyl-CoA	MATRIX	0.017E-3 M
8Hydroxyacyl-CoA	MATRIX	0.012E-3 M
80xoacyl-CoA	MATRIX	0.0032E-3 M
6Acyl-CoA	MATRIX	0.087E-3 M
6Enoyl-CoA	MATRIX	0.017E-3 M
6Hydroxyacyl-CoA	MATRIX	0.012E-3 M
6Oxoacyl-CoA	MATRIX	$0.0067\text{E-3}\ \text{M}$
4Acyl-CoA	MATRIX	0.087E-3 M
4Enoyl-CoA	MATRIX	0.017E-3 M
4Hydroxyacyl-CoA	MATRIX	0.012E-3 M
Acetoacetyl-CoA	MATRIX	0.0124E-3 M

5.4 The inner-membrane transport

Table 50: Initial condition of enzymes (inner-membrane transport)

name	localization	number of molecules
AAC	MT-IM	1000
AGC	MT-IM	1000
PiC	MT-IM	1000
PYC	MT-IM	1000
OGC	MT-IM	1000
DIC	MT-IM	1000
CIC	MT-IM	1000

6 Steady-state condition

This metabolic model reached in a steady-state around t=93000sec with the initial condition. Number of molecules at the steady-state are shown below. Obtaining a steady-state, this system clears requirements for Metabolic Control Analysis[Fell, 1992].

6.1 The respiratory chain

Table 51: Steady-state concentration of metabolites (respiratory chain)

name	localization	number of molecules
Q	MT-IMS	77547
QH2	MT-IMS	500
Cyt-c3+	MT-IMS	29624
Cyt-c2+	MT-IMS	999
H+	MT-IMS	3
H+	MATRIX	3

Table 52: Steady-state concentration of metabolites

nam	е	localization	number of molecules
ATF)	MT-IMS	13550(fix)
ATF)	MATRIX	180
ADF)	MT-IMS	1355(fix)
ADF)	MATRIX	121948(fix)
GTF)	MATRIX	2579
GDI	D	MATRIX	1338852
Pi		MT-IMS	12044(fix)
Pi		MATRIX	2507395

Table 53: Steady-state concentration of metabolites (TCA cycle)						
name	localization	number of molecules				
Cit	MT-IMS	1265 (fix)				
Cit	MATRIX	583455				
IsoCit	MATRIX	74758				
OG	MT-IMS	63 (fix)				
OG	MATRIX	424				
SCoA	MATRIX	32				
Suc	MATRIX	1133				
Fum	MATRIX	231567				
Mal	MT-IMS	1506 (fix)				
Mal	MATRIX	1028383				
OXA	MATRIX	302				
Asp	MATRIX	244090				
Asp	MT-IMS	3433 (fix)				
Glu	MATRIX	801482				
Glu	MT-IMS	9124 (fix)				
Ala	MATRIX	1016709				
Pyr	MT-IMS	27777 (fix)				
Pyr	MATRIX	309(fix)				
CoA	MT-IMS	700 (fix)				
CoA	MATRIX	286				
Acetyl-CoA	MATRIX	104498				
NADH	MATRIX	3672				
NAD+	MATRIX	61909				
NADPH	MATRIX	7508				
NADP+	MATRIX	58073				
CO2	MATRIX	42631671				

6.2 The TCA cycle and the inner-membrane transport

6.3 Fatty acid β oxidation

Table 54: Steady-state concentration of metabolites (fatty acid β oxidation 1)

name	localization	number of molecules
Car	MT-IMS	602 (fix)
Car	MATRIX	47418
PalCar	MT-IMS	1807 (fix)
PalCar	MATRIX	213280
16Acyl-CoA	MT-IMS	117 (fix)
ETFred	MATRIX	89
ETFox	MATRIX	82

name	localization	number of molecules
16Acyl-CoA	MATRIX	331
16Enoyl-CoA	MATRIX	698
16Hydroxyacyl-CoA	MATRIX	3
16Oxoacyl-CoA	MATRIX	769
14Acyl-CoA	MATRIX	331
14Enoyl-CoA	MATRIX	699
14Hydroxyacyl-CoA	MATRIX	3
14Oxoacyl-CoA	MATRIX	771
12Acyl-CoA	MATRIX	330
12Enoyl-CoA	MATRIX	700
12Hydroxyacyl-CoA	MATRIX	2
12Oxoacyl-CoA	MATRIX	763
10Acyl-CoA	MATRIX	331
10Enoyl-CoA	MATRIX	700
10Hydroxyacyl-CoA	MATRIX	2
10Oxoacyl-CoA	MATRIX	762
8Acyl-CoA	MATRIX	332
8Enoyl-CoA	MATRIX	701
8Hydroxyacyl-CoA	MATRIX	2
80xoacyl-CoA	MATRIX	763
6Acyl-CoA	MATRIX	332
6Enoyl-CoA	MATRIX	701
6Hydroxyacyl-CoA	MATRIX	3
6Oxoacyl-CoA	MATRIX	764
4Acyl-CoA	MATRIX	331
4Enoyl-CoA	MATRIX	702
4Hydroxyacyl-CoA	MATRIX	2
Acetoacetyl-CoA	MATRIX	239686

Table 55: Steady-state concentration of metabolites (fatty acid β oxidation 2)

7 Rate equations

7.1 AAC

$$v = \frac{\frac{k_{\rightarrow}^{D}(\Delta\psi)[E_{total}][ADP_{out}]}{1+\frac{k_{\rightarrow}^{D}(\Delta\psi)}{k_{\perp}^{D}(\Delta\psi)}\left(1+\frac{KD'}{[ADP_{in}]}\right)}}{\frac{KD'}{1+\frac{k_{\rightarrow}^{D}(\Delta\psi)}{k_{\perp}^{D}(\Delta\psi)}\left(1+\frac{KD'}{[ADP_{in}]}\right)} + [ADP_{out}]}$$
$$k_{\rightarrow}^{D}(\Delta\psi) = k_{0\rightarrow}^{D}e^{\phi C_{f}} \cdot \text{normalize}$$

$$k_{\rightarrow}^{D}(\Delta\psi) = k_{0\rightarrow}^{D}e^{\phi C_{r}} \cdot \text{normalize}$$

$$k_{\leftarrow}^{D}(\Delta\psi) = k_{0\leftarrow}^{D}e^{\phi C_{r}} \cdot \text{normalize}$$

$$= \frac{RT}{F} ln \frac{[H_{IMS}]}{[H_{MAT}]}$$

 ϕ

7.2 CB Ordered Bi Bi

$$v = \frac{\left(\frac{K_{c}F[S1][S2]}{K_{iS1}K_{mS2}} - \frac{K_{c}R[P1][P2]}{K_{mP1}K_{iP2}}\right)[E]}{\text{denom}}$$

denom = $1 + \frac{[S1]}{K_{iS1}} + \frac{K_{mS1}[S2]}{K_{iS1}K_{mS2}} + \frac{K_{mP2}[P1]}{K_{mP1}K_{iP2}} + \frac{[P2]}{K_{iP2}} + \frac{[S1][S2]}{K_{iS1}K_{mS2}}$
+ $\frac{K_{mP2}[S1][P1]}{K_{iS1}K_{mP1}K_{iP2}} + \frac{K_{mS1}[S2][P2]}{K_{iS1}K_{mS2}K_{iP2}} + \frac{[P1][P2]}{K_{mP1}K_{iP2}} + \frac{[S1][S2][P1]}{K_{iS1}K_{mS2}K_{iP1}} + \frac{[S2][P1][P2]}{K_{iS2}K_{mP1}K_{iP2}}$

7.3 Complex III

$$v = \frac{K_{cF}[E_t][A][B]}{\text{denom}}$$

denom = $\left(K_{mA}K_{q2}K_{b2} + K_{mA}K_{q2}[B] + \frac{K_{cF}}{k_8}K_{q1}[A]K_{b1} + \frac{K_{cF}}{k_8}K_{q1}[A][B]\right)[Q]$
+ $K_{mA}[B] + K_{mB}[A] + [A][B]$

7.4 Complex V

$$v = \frac{KcF[E]\left\{\frac{[ADP][Pi]}{K_{d}K_{p}}klt_{f}e^{-3(\beta-a_{x})\phi}\left(\frac{[H_{IMS}]}{Khxe^{ax\phi}}\right)^{3} - \frac{[ATP]}{K_{t}}K_{eq}klt_{r}e^{3(1-\beta-a_{y})\phi}\left(\frac{[H_{MAT}]}{Khye^{-ay\phi}}\right)^{3}\right\}}{\left(1 + \frac{[H_{IMS}]}{Khxe^{ax\phi}} + \frac{[H_{MAT}]}{Khye^{-ay\phi}}\right)^{3}\left(3 + \frac{[ADP][Pi]}{K_{d}K_{p}} + \frac{[ATP]}{K_{t}}\right)}$$

where $\phi = ln \frac{[H_{IMS}]}{[H_{MAT}]}$

7.5 IDHa

$$v = \frac{k_{cat}[E]([IsoCit]^2 + b[ADP][IsoCit])}{[IsoCit]^2 + c[IsoCit] + d[ADP] + e[ADP][IsoCit] + f}$$

7.6 IDHb

$$v = \frac{[E][NADP][IsoCit]}{\text{denom1}} - \frac{[E][NADPH][OG][CO_2]}{\text{denom2}}$$

denom1 = $\phi_0[NADP][IsoCit] + \phi_1[IsoCit] + \phi_2[NADP] + \phi_{12}$
denom2 = $\phi'_0[NADPH][OG][CO_2] + \phi'_1[OG][CO_2] + \phi'_2[NADPH][CO_2] + \phi'_3[NADPH][OG] + \phi'_{12}[CO_2] + \phi'_{13}[OG] + \phi'_{23}[NADPH] + \phi'_{123}$

7.7 Michaelis Uni Uni

$$v = \frac{K_{cF}[E][S]}{K_s + [S]}$$

7.8 Multisite Ping-Pong

$$v = \frac{k_{cat}[E_{total}][A][B][C]}{\text{denom}}$$

$$denom = K_{mC}[A][B] + K_{mB}[A][C] + K_{mA}[B][C] + [A][B][C] + [A][B][C] + \frac{K_{mA}K_{mP}K_{ib}K_{ic}[Q][R]}{K_{mR}K_{ip}K_{iq}} + \frac{K_{mC}[A][B][R]}{K_{ir}} + \frac{K_{mB}[A][C][Q]}{K_{iq}} + \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{mR}K_{ip}K_{ia}K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{mR}K_{ip}K_{ia}K_{iq}} + \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{mR}K_{ip}K_{ia}K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{mR}K_{ip}K_{ia}K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{mR}K_{ip}K_{ia}K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{mR}K_{ip}K_{ia}K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{mR}K_{ip}K_{ia}K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ib}K_{ic}[A][Q][R]}{K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A][Q][R]}{K_{iq}} - \frac{K_{mA}K_{mP}K_{ib}K_{ic}[A]$$

7.9 Ordered Bi Bi

$$v = \frac{K_{cF}K_{cR}[E]([S1][S2] - \frac{[P1][P2]}{K_{eq}})}{\text{denom}}$$

$$denom = K_{cR}K_{iS1}K_{mS2} + K_{cR}K_{mS2}[S1] + K_{cR}K_{mS1}[S2] + \frac{K_{cF}K_{mP2}[P1]}{K_{eq}} + \frac{K_{cF}K_{mP1}[P2]}{K_{eq}}$$

$$+ K_{cR}[S1][S2] + \frac{K_{cF}K_{mP2}[S1][P1]}{K_{eq}K_{iS1}} + \frac{K_{cF}[P1][P2]}{K_{eq}} + \frac{K_{cR}K_{mS1}[S2][P2]}{K_{iq}} + \frac{K_{cR}[S1][S2][P1]}{K_{iP1}}$$

$$+ \frac{K_{cF}[S2][P1][P2]}{K_{iS2}K_{eq}}$$

7.10 PC

$$v = \frac{V_1 V_2[A][B][C] - \frac{V_1 V_2[P][Q][R]}{K_{eq}}}{\text{denom}}$$

$$\begin{aligned} \text{denom} &= K_{ia}K_{mB}V_{2}[C] + K_{mC}V_{2}[A][B] + K_{mA}V_{2}[B][C] + K_{mB}V_{2}[B][C] + K_{mB}V_{2}[A][C] + V_{2}[A][B][C] \\ &+ \frac{K_{ip}K_{mQ}V_{1}[R]}{K_{eq}} + \frac{K_{mQ}V_{1}[P][R]}{K_{eq}} + \frac{K_{mP}V_{1}[Q][R]}{K_{eq}} + \frac{K_{mR}V_{1}[P][Q]}{K_{eq}} + \frac{V_{1}[P][Q][R]}{K_{eq}} \\ &+ \frac{K_{ia}K_{mB}V_{2}[C][P]}{K_{ip}} + \frac{K_{ia}K_{mB}V_{2}[C][Q]}{K_{ip}} + \frac{K_{iq}K_{mP}V_{1}[B][R]}{K_{ib}K_{eq}} + \frac{K_{iq}K_{mP}V_{1}[A][R]}{K_{ia}K_{eq}} \\ &+ \frac{K_{ia}V_{2}[A][B][R]}{K_{ir}} + \frac{K_{mR}V_{1}[C][P][Q]}{K_{ic}K_{eq}} + \frac{K_{mA}V_{2}[B][C][Q]}{K_{iq}} + \frac{K_{mA}V_{2}[B][C][P]}{K_{ip}} \\ &+ \frac{K_{mP}V_{1}[B][Q][R]}{K_{ib}K_{eq}} + \frac{K_{mQ}V_{1}[B][P][R]}{K_{ib}K_{eq}} \end{aligned}$$

7.11 Ping-Pong Bi Bi

$$v = \frac{K_{cF}K_{cR}[E]([S1][S2] - \frac{[P1][P2]}{K_{eq}})}{\text{denom}}$$

denom = $K_{cR}K_{mS2}[S1] + K_{cR}K_{mS1}[S2] + \frac{K_{cF}K_{mP2}[P1]}{K_{eq}} + \frac{K_{cF}K_{mP1}[P2]}{K_{eq}} + K_{cR}[S1][S2] + \frac{K_{cF}K_{mP2}[S1][P1]}{K_{eq}K_{iS1}} + \frac{K_{cF}[P1][P2]}{K_{eq}} + \frac{K_{cR}K_{mS1}[S2][P2]}{K_{iq}}$

7.12 Rapid Equilibrium Random Bi Bi

$$v = \frac{\frac{[A][B]}{\alpha K_{iA}K_{iB}}k_{cat}^{f}[E]_{total} - \frac{[P][Q]}{\beta K_{iP}K_{iQ}}k_{cat}^{r}[E]_{total}}{1 + \frac{[A]}{K_{iA}} + \frac{[B]}{K_{iB}} + \frac{[P]}{K_{iP}} + \frac{[Q]}{K_{iQ}} + \frac{[A][B]}{\alpha K_{iA}K_{iB}} + \frac{[P][Q]}{\beta K_{iP}K_{iQ}} + \frac{[B][Q]}{\gamma K_{iB}K_{iQ}} + \frac{[A][P]}{\delta K_{iA}K_{iP}}}$$

7.13 SCS

$$v = \frac{\left([A][B][C] - \frac{[P][Q][R]}{K_{eq}}\right) \left\{V_1 + V_2 \left(\frac{K_{mC}[P]}{K_{mC2}K_{ip}} + \frac{[C]}{K_{mC2}}\right)\right\}}{\text{denom}}$$

$$denom = K_{ia}K_{mB}[C] + K_{mB}[A][C] + K_{mA}[B][C] + K_{mC}[A][B] + [A][B][C]$$

$$+ \frac{[A][B][C]^2}{K_{mC2}} + \frac{K_{ia}K_{mB}K_{mC}[P]}{K_{ip}} + \frac{K_{ia}K_{mB}K_{mC}[P][Q]}{K_{ip}K_{iq}} + \frac{K_{ia}K_{mB}K_{mC}[P][R]}{K_{ip}K_{ir}}$$

$$+ \frac{K_{ia}K_{mB}K_{ic}[Q][R]}{K_{mQ}K_{ir}} + \frac{K_{ia}K_{mB}K_{mC}[P][Q][R]}{K_{ip}K_{mQ}K_{ir}} + \frac{K_{ia}K_{mB}K_{mC}[P]^2[Q][R]}{K_{ip}K_{mP2}K_{mQ}K_{ir}}$$

$$+ \frac{K_{ia}K_{mB}[C][Q]}{K_{iq}} + \frac{K_{ia}K_{mB}[C][R]}{K_{ir}} + \frac{K_{ia}K_{mB}[C][Q][R]}{K_{mQ}K_{ir}} + \frac{K_{ia}K_{mB}[C][P][Q][R]}{K_{mP2}K_{mQ}K_{ir}}$$

$$+ \frac{K_{mB}K_{mC}[A][P]}{K_{iq}} + \frac{K_{mA}K_{mC}[B][P]}{K_{ip}} + \frac{K_{mC}[A][B][P]}{K_{ip}} + \frac{K_{mC}[A][B][C][P]}{K_{mC2}K_{ip}}$$

$$+ \frac{K_{mA}[B][C][Q]}{K_{iq}} + \frac{K_{mB}[A][C][R]}{K_{ir}} + \frac{K_{mA}K_{mC}[B][P][Q]}{K_{ip}K_{iq}} + \frac{K_{mB}K_{mC}[A][P][R]}{K_{ip}K_{ir}}$$

7.14 Uni Uni Reversible

$$v = \frac{(K_{cF}K_p[S] - K_{cR}K_s[P])[E]}{K_s[P] + K_p[S] + K_sKp}$$

8 MeSH term and literature search

The mitochondrial model was built through comprehensive literature search. Here we show the tendency of MeSH terms embedded in the articles that were crucial for determination of the rate equations.

Table 56	The MeSH	torm	tondonav	of	the	orticlog	on	the	ropotion	machanism	of	oach	ong	rmo
Table 50.	The mean	term	tendency	or	une	articles	on	une	reaction	mechanism	or	each	enzy	me

Literature	Kinetics	Models	Mathematics	enzyme name	substrate name
[Barden et al., 1972]	+	+, Chemical	+	-	+
[Beckmann and Frerman, 1985]	+	-	-	+	-
[Crow et al., 1983]	+	-	+	+	+
[Davisson and Schulz, 1985]	+	+, Biological	-	+	+
[De Rosa et al., 1979]	-	-	-	+	-
[Dierks and Krämer, 1988]	+	-	-	+	-
[Fato et al., 1996]	+	-	-	+	+
[Grivennikova et al., 1993]	-	-	-	+	-
[Guarriero-Bobyleva et al., 1978]	+	-	-	+	+
[Hamada et al., 1975]	+	-	-	+	+
[Indiveri et al., 1991b]	+	-	-	+	+
[Indiveri et al., 1991a]	+	-	-	+	+
[Indiveri et al., 1994]	+	-	-	+	+
[Kholodenko, 1993]	+	+	-	+	+
[Krämer and Klingenberg, 1982]	+	-	-	+	+
[Kubota et al., 1992]	+	-	-	+	+
[Malmström and Andréasson, 1985]	+	-	-	+	+
[Mann et al., 1995]	+	-	-	+	+
[Matsuoka and Srere, 1973]	+	-	+	+	+
[McKean et al., 1979]	+	-	-	-	+
[Miyazawa et al., 1981]	+	-	-	+	-
[Mukherjee and Srere, 1976]	-	-	-	-	+
[Plaut et al., 1974]	+	+, Chemical	+	+	+
[Ramsay et al., 1987]	+	-	-	+	+
[Sluse et al., 1991]	+	-	-	+	+
[Stappen and Krämer, 1994]	+	-	-	+	-
[Yang and Schulz, 1987]	+	+, Theoretical	+	+	+
Frequency	24/27	5/27	5/27	24/27	21/27

References

- [Barden et al., 1972] Barden, R. E., Fung, C. H., Utter, M. F., and Scrutton, M. C. (1972). Pyruvate carboxylase from chicken liver. J. Biol. Chem., 247(4):1323–33.
- [Beckmann and Frerman, 1985] Beckmann, J. D. and Frerman, F. E. (1985). Reaction of electron-transfer flavoprotein-ubiquinone oxidoreductase. *Biochemistry*, 24(15):3922–5.
- [Bisaccia et al., 1993] Bisaccia, F., De Palma, A., Dierks, T., Krämer, R., and Palmieri, F. (1993). Reaction mechanism of the reconstituted tricarboxylate carrier from rat liver mitochondria. *Biochim. Biophys. Acta*, 1142(1-2):139–45.
- [Boyer, 1970] Boyer, P. D., editor (1970). The Enzymes. Academic Press, New York, London.
- [Capuano et al., 1990] Capuano, F., Di Paola, M., Azzi, A., and Papa, S. (1990). The monocarboxylate carrier from rat liver mitochondria: purification and kinetic characterization in a reconstituted system. *FEBS lett.*, 261(1):39–42.
- [Cha and Parks Jr., 1964] Cha, S. and Parks Jr., R. E. (1964). Succinic thiokinase II. kinetic studies: initial velocity, product inhibition, and effect of arsenate. J. Biol. Chem., 239(6):1968–77.
- [Cleland, 1973] Cleland, W. W. (1973). Derivation of rate equations of multisite ping-pong mechanisms with ping-pong reactions at one or more sites. J. Biol. Chem., 248(24):8353–5.
- [Colomb et al., 1969] Colomb, M. G., Chéruy, A., and Vignais, P. V. (1969). Nucleoside diphosphatekinase from beef heart mitochondria: purification and properties. *Biochemistry*, 8(5):1926–39.
- [Crow et al., 1983] Crow, K. E., Braggins, T. J., and Hardman, M. J. (1983). Human liver cytosolic malate dehydrogenase: purification, kinetic properties, and role in ethanol metabolism. Arch. Biochem. Biophys., 225(2):621–9.
- [Davisson and Schulz, 1985] Davisson, V. J. and Schulz, A. R. (1985). The purification and steady-state kinetic behaviour of rabbit heart mitochondrial NAD(P)+ malic enzyme. *Biochem. J.*, 225(2):335–42.
- [De Rosa et al., 1979] De Rosa, G., Burk, T. L., and Swick, R. W. (1979). Isolation and characterization of mitochondrial alanine aminotransferase from porcine tissue. *Biochim. Biophys. Acta*, 567(1):116–24.
- [Dierks and Krämer, 1988] Dierks, T. and Krämer, R. (1988). Asymmetric orientation of the reconstituted aspartate / glutamete carrier from mitochondria. *Biochim. Biophys. Acta*, 937(1):112–26.
- [Ehrlich et al., 1981] Ehrlich, R. S., Hayman, S., Ramachandran, N., and Colman, R. F. (1981). Re-evaluation of molecular weight of pig heart NAD-specific isocitrate dehydrogenase. J. Biol. Chem., 256(20):10560–4.
- [Fato et al., 1996] Fato, R., Estornell, E., Di Bernardo, S., Pallotti, F., Parenti Castelli, G., and Lenaz, G. (1996). Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. *Biochemistry*, 35(8):2705–16.
- [Fell, 1992] Fell, D. A. (1992). Metabolic control analysis: a survey of its theoretical and experimental development. *Biochem. J.*, 286(Pt 2):313–30.
- [Garces and Cleland, 1969] Garces, E. and Cleland, W. W. (1969). Kinetic studies of yeast nucleoside diphosphate kinase. *Biochemistry*, 8(2):633–40.
- [Grivennikova et al., 1993] Grivennikova, V. G., Gavrikova, E. V., Timoshin, A. A., and Vinogradov, A. D. (1993). Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. new assay system and overall properties of the reaction. *Biochim. Biophys. Acta*, 1140(3):282–92.
- [Guarriero-Bobyleva et al., 1978] Guarriero-Bobyleva, V., Masini, A., Volpi-Becchi, M. A., and Cennamo, C. (1978). Kinetic studies of cytoplasmic and mitochondrial aconitate hydratases from rat liver. *Ital. J. Biochem.*, 27(5):287–99.
- [Hamada et al., 1975] Hamada, M., Koike, K., Nakaula, Y., Hiraoka, T., Koike, M., and Hashimoto, T. (1975). A kinetic study of the α-keto acid dehdrogenase complexes from pig heart mitochondria. J. Biochem. (Tokyo), 77(5):1047–56.
- [Heckert et al., 1989] Heckert, L. L., Butler, M. H., Reimers, J. M., Albe, K. R., and Wright, B. E. (1989). Purification and characterization of the 2-oxoglutarate dehydrogenase complex from *dictyostelium discoideum*. J. Gen. Microbiol., 135(Pt 1):155–61.

- [Henson and Cleland, 1964] Henson, C. P. and Cleland, W. W. (1964). Kinetic studies of glutamic oxaloacetic transaminase isozymes. *Biochemistry*, 3(3):338–45.
- [Indiveri et al., 1991a] Indiveri, C., Dierks, T., Krämer, R., and Palmieri, F. (1991a). Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. *Eur. J. Biochem.*, 198(2):339–47.
- [Indiveri et al., 1993] Indiveri, C., Prezioso, G., Dierks, T., Krämer, R., and Palmieri, F. (1993). Kinetic characterization of the reconstituted dicarboxylate carrier from mitochondria: a four-binding-site sequential transport system. *Biochim. Biophys. Acta*, 1143(3):310–8.
- [Indiveri et al., 1994] Indiveri, C., Tonazzi, A., and Palmieri, F. (1994). The reconstituted carnitine carrier from rat liver mitochondria: evidence for a transport mechanism different from that of the other mitochondrial translocators. *Biochim. Biophys. Acta*, 1189(1):65–73.
- [Indiveri et al., 1991b] Indiveri, C., Tonazzi, A., Prezioso, G., and Palmieri, F. (1991b). Kinetic characterization of the reconstituted carnitine carrier from rat liver mitochondria. *Biochim. Biophys. Acta*, 1065(2):231– 238.
- [Kholodenko, 1993] Kholodenko, B. N. (1993). Kinetic models of coupling between H⁺ and Na⁺-translocation and ATP synthesis/hydrolysis by F_oF_1 -ATPases: Can a cell utilize both $\Delta \mu_{H^+}$ and $\Delta \mu_{Na^+}$ for ATP synthesis *in vivo* conditions using the same enzyme? J. Bioenerg. Biomembr., 25(3):285–95.
- [Kiselevsky et al., 1990] Kiselevsky, Y. V., Ostrovtsova, S. A., and Strumilo, S. A. (1990). Kinetic characterization of the pyruvate and oxoglutarate dehydrogenase complexes from human heart. Acta Biochim. Pol., 37(1):135–9.
- [Krämer and Klingenberg, 1982] Krämer, R. and Klingenberg, M. (1982). Electrophoretic control of reconstituted adenine nucleotide translocation. *Biochemistry*, 21(5):1082–9.
- [Kubota et al., 1992] Kubota, T., Yoshikawa, S., and Matsubara, H. (1992). Kinetic mechanism of beef heart ubiquinol:cytochrome c oxidoreducase. J. Biochem. (Tokyo), 111(1):91–8.
- [Londesborough and Dalziel, 1970] Londesborough, J. C. and Dalziel, K. (1970). Kinetic studies of NADPdependent isocitrate dehydrogenase form beef heart mitochondria. In Sund, H., editor, *Pyridine Nucleotide Dependent Dehydrogenases*, pages 315–24. Springer-Verlag, New York.
- [Malmström and Andréasson, 1985] Malmström, B. G. and Andréasson, L. E. (1985). The steady-state rate equation for cytochrome c oxidase based on a minimal kinetic scheme. J. Inorg. Biochem., 23(3-4):233–42.
- [Mann et al., 1995] Mann, W. R., Yan, B., Dragland, C. J., and Bell, P. A. (1995). Kinetic, circular dichroism and fluorescence studies on heterologously expressed carnitine palmitoyltransferase II. J. Enzyme Inhib., 9(4):303–8.
- [Matsuno-Yagi and Hatefi, 1985] Matsuno-Yagi, A. and Hatefi, Y. (1985). Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis. J. Biol. Chem., 260(27):14424–7.
- [Matsuoka and Srere, 1973] Matsuoka, Y. and Srere, P. A. (1973). Kinetic studies of citrate synthase from rat kidney and rat brain. J. Biol. Chem., 248(33):8022–30.
- [McKean et al., 1979] McKean, M. C., Frerman, F. E., and Mielke, D. M. (1979). General acyl-CoA dehydrogenase frome pig liver. J. Biol. Chem., 254(8):2730–5.
- [Miyazawa et al., 1981] Miyazawa, S., Furuta, S., Osumi, T., Hashimoto, T., and Ui, N. (1981). Properties of peroxisomal 3-ketoacyl-CoA thiolase from rat liver. J. Biochem. (Tokyo), 90(2):511–9.
- [Mukherjee and Srere, 1976] Mukherjee, A. and Srere, P. A. (1976). Purification of and mechanism studies on citrate synthase. J. Biol. Chem., 251(5):1476–80.
- [Nalecz, 1994] Nalecz, K. A. (1994). The mitochondrial pyruvate carrier: the mechanism of substrate binding. In Forte, M. and Colombini, M., editors, *Molecular Biology of Mitochondrial Transport Systems*, pages 67– 79. Springer-Verlag, Berlin, Heidelberg.
- [Plaut et al., 1974] Plaut, G. W. E., Schramm, V. L., and Aogaichi, T. (1974). Action of magnesium ion on diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. J. Biol. Chem., 249(6):1848–56.
- [Ramsay et al., 1987] Ramsay, R. R., Derrick, J. P., Friend, A. S., and Tubbs, P. K. (1987). Purification and properties of the soluble carnitine palmitoyltransferase from bovine liver mitochondria. *Biochem. J.*, 244(2):271–8.

[Shepherd and Garland, 1969] Shepherd, D. and Garland, P. B. (1969). The kinetic properties of citrate synthase from rat liver mitochondria. *Biochem. J.*, 114(3):597–610.

- [Sluse et al., 1991] Sluse, F. E., Evens, A., Dierks, T., Duyckaerts, C., Sluse-Goffart, C. M., and Krämer, R. (1991). Kinetic study of the aspartate / glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system. *Biochim. Biophys. Acta*, 1058(3):329–38.
- [Stappen and Krämer, 1994] Stappen, R. and Krämer, R. (1994). Kinetic mechanism of phosphate/phosphate and phosphate/OH⁻ antiports catalyzed by reconstituted phosphate carrier from beef heart mitochondria. J. Biol. Chem., 269(15):11240–6.
- [Velick and Vavra, 1962] Velick, S. F. and Vavra, J. (1962). A kinetic and equilibrium analysis of the glutamic oxaloacetate transaminase mechanism. J. Biol. Chem., 237(7):2109–22.
- [Woeltje et al., 1987] Woeltje, K. F., Kuwajima, M., Foster, D. W., and McGarry, J. D. (1987). Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. J. Biol. Chem., 262(20):9822-7.
- [Yang and Schulz, 1987] Yang, S. Y. and Schulz, H. (1987). Kinetics of coupled enzyme reactions. Biochemistry, 26(17):5579–84.